Transfer in Reinforcement Learning via Shared Features Citation
نویسندگان
چکیده
We present a framework for transfer in reinforcement learning based on the idea that related tasks share some common features, and that transfer can be achieved via those shared features. The framework attempts to capture the notion of tasks that are related but distinct, and provides some insight into when transfer can be usefully applied to a problem sequence and when it cannot. We apply the framework to the knowledge transfer problem, and show that an agent can learn a portable shaping function from experience in a sequence of tasks to significantly improve performance in a later related task, even given a very brief training period. We also apply the framework to skill transfer, to show that agents can learn portable skills across a sequence of tasks that significantly improve performance on later related tasks, approaching the performance of agents given perfectly learned problem-specific skills.
منابع مشابه
Transfer in Reinforcement Learning via Shared Features
We present a framework for transfer in reinforcement learning based on the idea that related tasks share some common features, and that transfer can be achieved via those shared features. The framework attempts to capture the notion of tasks that are related but distinct, and provides some insight into when transfer can be usefully applied to a problem sequence and when it cannot. We apply the ...
متن کاملEffective Transfer via Demonstrations in Reinforcement Learning: A Preliminary Study
There are many successful methods for transferring information from one agent to another. One approach, taken in this work, is to have one (source) agent demonstrate a policy to a second (target) agent, and then have that second agent improve upon the policy. By allowing the target agent to observe the source agent’s demonstrations, rather than relying on other types of direct knowledge transfe...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملSample-Efficient Reinforcement Learning through Transfer and Architectural Priors
Recent work in deep reinforcement learning has allowed algorithms to learn complex tasks such as Atari 2600 games just from the reward provided by the game, but these algorithms presently require millions of training steps in order to learn, making them approximately five orders of magnitude slower than humans. One reason for this is that humans build robust shared representations that are appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012